
1

A High-Performance Index for Real-Time Matrix
Retrieval

Zeyi Wen1, Mingyu Liang2, Bingsheng He3, Zexin Xia4

1The University of Western Australia, 2Cornell University, 3National University of Singapore
zeyi.wen@uwa.edu.au, ml2585@cornell.edu, hebs@comp.nus.edu.sg

4Shanghai Jiao Tong University, China
xiazexin@sjtu.edu.cn

Abstract—A fundamental technique in machine learning called “embedding” has made significant impact on data representation.
Some examples of embedding include word embedding, image embedding and audio embedding. With the embedding techniques,
many real-world objects can be represented using matrices. For example, a document can be represented by a matrix, where each row
of the matrix represents a word. On the other hand, we have witnessed that many applications continuously generate new data
represented by matrices and require real-time query answering on the data. These continuously generated matrices need to be well
managed for efficient retrieval. In this paper, we propose a high-performance index for real-time matrix retrieval. Besides fast query
response, the index also supports real-time insertion by exploiting the log-structured merge-tree (LSM-tree). Since the index is built for
matrices, it consumes much more memory and requires much more time to search than the traditional index for information retrieval. To
tackle the challenges, we propose an index with precise and fuzzy inverted lists, and design a series of novel techniques to improve the
memory consumption and the search efficiency of the index. The proposed techniques include vector signature, vector residual sorting,
hashing based lookup, and dictionary initialization to guarantee the index quality. Comprehensive experimental results show that our
proposed index can support real-time search on matrices, and is more time and memory efficient than the state-of-the-art method.

Index Terms—Indexing, Search, Matrices.

F

1 INTRODUCTION

Machine learning techniques have enjoyed a great success in
recent years. A relatively recently invented technique called
“embedding” [1] has played an important role in this success.
Embedding techniques can be used to represent words using word
embedding [2], images using image-to-vector techniques [3], [4]
and even database queries [5]. As a result, many more real-world
objects can be represented by matrices. For example, a matrix
can represent a document where each row (i.e., each vector) of
the matrix stands for a word in the document. Another example
is that a matrix can represent a video where each row of the
matrix corresponds to an image. A matrix can also represent an
audio stream where each row of the matrix represents a phonetic
lattice. Figure 1 shows the key steps of representing an object
(e.g., a document, a video or an audio stream) by a matrix. The
intermediate step is to divide the object into small pieces and to
convert the small pieces into vectors. The vectors of the object are
then put together to form a matrix. These objects represented by
matrices require new data management systems to support efficient
indexing and retrieval.

On the other hand, we have witnessed that many applications
(such as Twitter, Facebook Live Audio and YouTube Live Stream-
ing) generate new data continuously and require real-time query
answering on the data. The continuously generated data from
these applications can be represented using matrices. Thus, for
document (e.g., tweets) retrieval applications, a user may choose
one or more keywords represented by vector(s) to search for
relevant documents represented by matrices; similarly, for video
(e.g., YouTube Live Streaming) retrieval applications, a user may

doc2word

video2image

audio2lattice

a collection of words

a collection of images

a collection of phonetic lattices

word2vec
<1.1, 0.8, 1.2, 0.3, 1.5, 0.2>
<0.3, 0.5, 1.1, 0.4, 1.1, 0.8>

...
…
...

<1.3, 0.7, 0.1, 0.5, 1.6, 0.4>
<0.6, 0.2, 1.8, 0.7, 1.9, 0.7>

a matrix

image2vec
<0.1, 0.4, 0.8, 0.9, 0.5, 1.2>
<1.2, 0.1, 1.3, 0.8, 1.2, 0.4>

...
…
...

<1.8, 0.4, 0.8, 0.6, 1.1, 0.7>
<0.4, 0.7, 0.1, 0.4, 0.3, 0.4>

lattice2vec

<0.7, 1.2, 0.4, 0.1, 1.5, 0.2>
<0.5, 0.4, 1.1, 0.4, 1.0, 1.4>

...
…
...

<0.4, 0.8, 0.1, 0.7, 0.9, 1.2>
<0.7, 1.2, 0.7, 0.8, 0.1, 0.2>

a matrix

a matrix

a document

a video

an audio stream

Fig. 1. A document, video or audio stream is represented by a matrix

choose one or more images represented by vector(s) to search for
relevant videos represented by matrices.

The advantages of representing the data in matrices lie in two
aspects. First, real-time indexing and query answering algorithms
can be designed in a generic way (i.e., application independent) as
matrices can represent generic objects. Second, users can retrieve
relevant matrices to the query based on more flexible similarity
(e.g., semantically in document retrieval, phonetically in audio
retrieval or scenically similar in video retrieval) depending on
the user’s preference. Users can even define their own similarity
functions for their queries (e.g., returning newer objects vs. more
popular objects). Modeling the problems as matrix retrieval is able
to significantly reduce the development and engineering costs of
building individual search engines specific to each data types.

For supporting real-time search, an inverted index needs

2

to be built, as a common practice in the information retrieval
community [6]. An inverted index consists of two key parts: a
dictionary and a set of inverted lists. The dictionary contains
words and the inverted lists include the document IDs in the
traditional information retrieval. Equivalently, in our proposed
matrix retrieval, the dictionary contains vectors and the inverted
lists include the matrix IDs. There are two major challenges in
matrix retrieval. Challenge 1: Directly building an inverted index
on the matrices results in slow query response, because the number
of possible vectors in the dictionary is O(xn) where n is the
dimension of the vector space and x is the number of possible
values in each dimension. Hence, the dictionary of the inverted
index may be very large. Challenge 2: Words (i.e., strings) can be
sorted alphabetically, while sorting vectors is non-trivial. So, the
binary search does not apply on the dictionary of vectors, which
is quite different from the text search problem. A naive solution is
to use vector approximation, which can make the dictionary size
smaller. Consequently, performing a scan over all the vectors in
the dictionary is faster. However, the inverted list of each vector
requires a much larger amount of memory due to storing the
approximation information of the vectors.

To tackle the above challenges, we propose a high-
performance index equipped with precise and fuzzy inverted lists.
A precise inverted list for vector v is the inverted list that only
includes the IDs of the matrices that have vectors exactly matching
v. In comparison, a fuzzy inverted list may include matrices that
have vectors approximately matching v. Thus, both exact search
and approximate search are supported by our proposed index.
Moreover, we propose a series of novel techniques to improve
the memory consumption and the search efficiency of the index.
First, to achieve an index for real-time applications, we develop a
hashing based lookup technique for exact search, such that finding
a vector in the dictionary can be performed more efficiently.
Second, our index has mechanism to allow inserting a vector
into single or multiple fuzzy inverted lists, in order to further
boost query response efficiency. Third, we propose storing vector
signatures which are sufficient for similarity computation in the
index. Using vector signatures leads to a memory efficient index,
while not sacrificing the quality of query results. We also exploit
initialization to build a more stable inverted index on a given set of
vectors. In this article, we make the following key contributions.

• We propose an index for real-time search on matrices. The
index supports both exact and approximate search.

• To tackle the challenges of large memory consumption and
expensive search on the dictionary of vectors, we design
the index with precise and fuzzy inverted lists.

• We propose a series of novel techniques to improve the
memory consumption and the search efficiency, including
vector signature, vector residual sorting, hashing based
lookup, and initialization to guarantee the index quality.

• We conduct extensive experiments to study the perfor-
mance of the index. The results show that our proposed
index can support both exact and approximate search
on matrices in real-time, and is more time and memory
efficient than the state-of-the-art method.

The remainder of this paper is structured as follows. We first
present the related work in Section 2. Then, we elaborate our
proposed index for real-time vector search in detail in Section 3.
Our comprehensive experimental study is provided in Section 4.
Finally, we conclude the paper in Section 5.

2 RELATED WORK

In this section, we review the relevant literature. We categorize
the related work in two groups: (i) embedding, vector search and
approximation; (ii) text indexing and search.

2.1 Embedding, vector search and approximation

Representing objects using vectors has been prevailing in machine
learning. The traditional way of representing words is using the
so-called “one-hot” representation [1], where a vector only has
one dimension set to “1” and the other dimensions are set to
“0”. A denser representation called word embedding which also
represents a word using a vector [7], [8]. The vectors produced
by word embedding are denser and the similarity between words
can be easily measured. In word embedding, the words with
similar meaning are represented using similar vectors. Other
objects can also be represented by vectors. The examples include
representing images by vectors [3], videos by vectors [4], and
queries by vectors [5]. Vectors have played key roles in traditional
machine learning models [9], [10]. Using these vectors, we can
form matrices. Specifically, a document can be represented by a
matrix, where each row (i.e., each vector) represents a word in
the document. Similarly, a video can be represented by a matrix,
where each row represents a frame of the video.

Existing work on vector search is mainly nearest neighbor
search [11]. The search for vectors usually means finding the top-k
nearest neighbors. There are mature theories [12] and libraries for
nearest neighbor search, including Faiss [13] and NMSLIB [14].
However, little research has been done in searching for relevant
matrices given a query.

Storing the whole vectors requires more memory than storing
other types of data (e.g., strings). Moreover, performing operations
(e.g., measuring similarity) on vectors is also more expensive,
especially for high dimensional vectors. To reduce memory con-
sumption and computation cost, vector approximation techniques
can be used to simplify the vectors. For example, the dimension-
ality reduction techniques, such as principal component analysis
(PCA) [15] and non-negative matrix factorization (NMF) [16],
can be used to reduce the number of dimensions of the vectors
while retaining the key information. Another approach for vector
approximation is called VA-file [17] which divides the data space
into a user specified number of rectangular cells. Then the vectors
are represented using the cells. The VA-file is one of the com-
monly used approaches for nearest neighbor search. The similar
approach is adapted in Faiss [13].

2.2 Text indexing and search

Indexing and search problems have been studied for many
years [18]. Fast search on a document is often accomplished by
using an inverted index [19]. For indexing documents, the indexing
process involves tokenizing the documents, and then the docu-
ments are indexed by an inverted index. For supporting real-time
search and query, the log-structured merge-tree (LSM-tree) [20]
was proposed. The LSM-tree constructs multiple inverted indices,
and the insertion is handled efficiently using the smallest inverted
index. Two adjacent indices are merged when the smaller index
exceeds its memory limit. Wu et al. exploited LSM-trees and
proposed “LSII” for real-time search on tweets [21] and Wen
et al. proposed “RTSI” based on LSM-trees for real-time search
on live audio streams [22], [23]. Both LSII and RTSI originally

3

search

scoring

ranking

data

convert to vectors

matrices

user query

convert to vectors

all matched
matrix IDs

relevant
matrix IDs

query result

build index

our proposed indexre
tri

ev
e

Fig. 2. Query and indexing on matrices

developed for search on text, but they can be extended for the real-
time matrix retrieval. Note that the inverted lists of RTSI mainly
store the IDs of the audio streams, while our proposed index also
needs to store residuals of vectors. The handling of residuals is
challenging during insertion and query processing. We will present
more details of our techniques in the next section, and compare
LSII and RTSI against our proposed index in the experiments.

Approximate search for documents has been extensively stud-
ied [24]. The key idea of the search is that the keywords of the
query are matched against a dictionary, and to find out the most
similar words in the dictionary [25]. Then the selected words from
the dictionary are used to replace the keywords of the query. After
the word replacement, the remaining part of the process is the
same to the common search problems. In this paper, we aim to
propose a more generic index for matrix retrieval. Our proposed
index not only supports search for documents, but also supports
search for other type of data like videos and audio streams, given
that the documents, videos or audio streams are represented using
matrices.

Little work has been done in the database and information re-
trieval community on matrix retrieval. Here, we briefly present the
related work on matrix retrieval in other fields. The term “matrix
retrieval” was first used in psychology [26]. Some psychologists
believe that humans organize information in their brains using
“matrices”. The meaning of “matrix retrieval” in psychology is
to recall a certain event from human memory in the brain. In
image processing, the meaning of “matrix retrieval” is recovering
matrices after Fourier transform or other similar techniques [27],
[28]. The purpose of matrix retrieval is to construct the missing
matrices based on the existing matrices. The literature in these
fields has huge difference from ours, as ours aims to obtain
relevant matrices for a query while the existing work aims to
construct/recover a matrix. So, we will not discuss the work in
these fields further. It is worthy to point out that the matrices we
consider may have different numbers of rows. To have a concrete
example, two documents may have different number of words, and
a word corresponds to a vector. Hence, the number of rows (i.e.,
vectors) in the two matrices is different. On the other hand, the
matrices must have the same number of columns. This is because
the vectors must have the same number of dimensions, i.e., the
words are represented in the same vector space, to allow measuring
the similarity of the vectors.

3 AN INDEX FOR REAL-TIME MATRIX RETRIEVAL

In this section, we elaborate the details of our proposed index
called “VecDex” for real-time matrix retrieval. Figure 2 shows

the key steps of indexing and querying the matrices. The continu-
ously generated data are converted into vectors using embedding
techniques, and the vectors of the same object are put together to
form a matrix. Then, an index (i.e., VecDex) based on the log-
structured merge-tree (LSM-tree) is built on these matrices. When
a user inputs a query, the query is converted into vectors which
are used to search on the index for relevant matrices.

It is challenging to design an efficient index for real-time
matrix retrieval. The first challenge in VecDex is that storing
vectors (especially high dimensional vectors) in the inverted in-
dex requires much more memory than the traditional index for
information retrieval. The second key challenge is that searching
for a similar vector in a dictionary is much more expensive than
searching keywords, since binary search does not apply on a
dictionary of vectors (i.e., vectors cannot be “sorted”). Searching
for a vector in a dictionary is a key component in both insertion
and query of VecDex. Therefore, the efficiency of searching for a
vector in a dictionary is crucial for the efficiency of VecDex.

To tackle the above challenges, we power VecDex with precise
inverted lists and fuzzy inverted lists. We will elaborate more de-
tails about the precise and fuzzy inverted lists later in Section 3.3.
The key insight is that VecDex with precise inverted lists is used
for applications required exact search or with a relatively small
number of unique vectors, while VecDex with fuzzy inverted lists
is used for applications with a large number of unique vectors.
To achieve a memory friendly and efficient index, we propose a
series of novel techniques to support the real-time matrix retrieval.
First, we develop a hashing based lookup technique for VecDex,
which achieves significant performance gain over the baseline.
Second, we design novel techniques to allow inserting a vector
into single or multiple fuzzy inverted lists, such that the users
can better control query response time and memory consumption
depending on the users’ applications. Third, we propose to store
vector signatures which are sufficient for similarity computation,
instead of storing the whole vectors. Using vector signatures leads
to a memory efficient index, while not sacrificing the quality of
query results. We also exploit initialization to build a more stable
inverted index on a given set of vectors.

Next, we first define the matrix retrieval problem, and present
details about the LSM-tree. Then, we explain insertion and query
answering in VecDex with precise inverted lists and VecDex with
fuzzy inverted lists, respectively. Finally, we present how the
update and deletion are handled in VecDex for completeness.

3.1 Problem definition

Here, we formally define the matrix retrieval problem.

Definition 1 (The Matrix Retrieval Problem). Given a set of
matrices M and a query Q which has a small number of vectors
denoted by v1, ..., vg where g ≥ 1, the matrix retrieval problem
is to find the top-k most relevant matrices in M with respect to
Q. Formally, it is to find a set MQ ⊆ M, such that |MQ| = k,
Rel(A,Q) ≥ Rel(B,Q),∀A ∈ MQ and ∀B ∈ M \MQ.

The relevance scoring function Rel(A,Q) in this paper is
defined as Rel(A,Q) =

∑i=g
i=1(tfvi

· idfvi
), where tfvi

is the
term frequency (i.e., TF) of vi in the matrix A and idfvi

is
the inverse document frequency (IDF) of vi. We use TF-IDF to
compute the relevant score because it is a popular measure for
relevance. Other relevance scoring functions such as BM25 [29]
can be used in the definition as well. Note that the query Q may

4

matrices

I0 I1 I2 Ininsert

inverted index

size: ρ⨉|I0|

size: ρ⨉|I1|

query
vectors

Fig. 3. VecDex design based on log-structured merge-tree (LSM-tree)

have multiple vectors. When performing the query, one vector at
a time is searched in VecDex and the results are aggregated when
computing the relevant score.

3.2 The log-structured merge-tree (LSM-tree)

The LSM-tree [20] has been widely used for real-time search
applications which involve frequent read and write operations.
VecDex exploits the LSM-tree to enable real-time matrix retrieval.
The design is shown in Figure 3. As we can see from the figure,
the LSM-tree has multiple inverted indices denoted by I0, I1, ...,
In. The second inverted index I1 is ρ times larger than I0 and is 1

ρ
of I2. This log structure amortizes the cost of merging indices and
improves the overall insertion efficiency, while retaining the real-
time property of search. The insertion cost is approximately the
cost of inserting a vector to I0 [22]. This property makes the LSM-
tree index popular in real-time full text search applications [21],
[30]. Next, we will show how an inverted index (particularly, I0)
is built in VecDex. Building I1 and onwards is simply merging the
previous inverted indices.

3.3 VecDex with precise inverted lists

For explaining precise and fuzzy inverted lists, we introduce a
vector in the dictionary of the inverted index denoted by vd. A
precise inverted list means the inverted list corresponding to vd
only includes the matrices that have vectors identical to vd. In
comparison, a fuzzy inverted list may include matrices that have
vectors approximately matching vd (i.e., similar to vd). VecDex
with precise inverted lists can be used for applications that mainly
require exact matching or have a relatively small number of unique
vectors. For example, VecDex with precise inverted lists can be
used in some English word embedding related applications, where
only English words (i.e., 180,000 words according to Oxford
Dictionaries Online1) are considered.

VecDex with precise inverted lists can support both exact
and approximate search on matrices. For each query vector,
exact search retrieves only one inverted list, i.e., the inverted
list keeps track of the matrices containing the query vector. In
comparison, for each query vector, approximate search retrieves
multiple inverted lists that keep track of the matrices containing
vectors similar to the query vector. In VecDex with precise inverted
lists, the index is similar to the traditional LSM-tree. Each inverted
index consists of a dictionary and a number of inverted lists. A
vector vd in the dictionary is associated with an inverted list
containing matrix IDs. Those matrices in the inverted list must

1. https://goo.gl/SA1WD9

contain at least one vector identical to vd. As the dictionary con-
tains vectors, search for the most similar vector in the dictionary
for the query vector may require a sequential scan if the vectors
in the dictionary are not indexed. In this paper, we propose to
use Faiss [13] to index the vectors in the dictionary. Faiss is an
open-sourced project developed by Facebook, and is for searching
top-p most similar vectors in a dictionary (a.k.a. nearest neighbor
search). To avoid the risk of confusion, please recall that the goal
of this paper is retrieving the top-k relevant matrices to a query,
while Faiss is for searching p similar vectors to a given vector.

Supporting exact search with hashing based lookup: In some
applications, users are only interested in the exact match. For
example, users only want to retrieve all the documents containing
the word “Singapore”, or only want to retrieve videos containing a
given image. For these exact search applications, using Faiss [13]
to find the inverted list is unnecessary, since Faiss computes all its
nearest neighbor first and then returns the most similar one (i.e.,
the one identical to the query vector in this scenario).

To improve the efficiency of insertion and query for these
applications, we propose to use hashing based lookup in VecDex.
Although various hash functions can be used in VecDex, the hash
value of a vector we use in this paper is the sum of the values
of each dimension. Then, when we need to find a vector in the
dictionary, we use the hash function to quickly locate the vector.
When a hash value matches to multiple vectors (i.e., conflict), we
compare the vectors of the same hash value and find out the one
identical to the query vector. As we will see in Section 4, the hash
function based method is much faster than the Faiss based method
for both insertion and answering queries.

3.4 VecDex with fuzzy inverted lists
In many applications, the number of unique vectors is very large,
which requires huge memory consumption to store the vector
dictionary. For example, the number of vectors generated from
audio features may be very large. More specifically, the number of
unique vectors is proportional to xn, where n is the dimensionality
of the vector space, and x is the number of possible values of
each dimension. Therefore, it is necessary to reduce the size of
the vector dictionary. Our key idea is to consider similar vectors
as the “same” vector, and store their representative vector in the
dictionary. If a matrix contains multiple vectors that are all similar
to the representative vector, those similar vectors are represented
by the representative vector in the dictionary, and the residual
of each vector is stored in the inverted list. As a result, the
inverted list for vd may keep track of matrices that have no
vectors identical to vd. We call this type of inverted list “fuzzy
inverted list”. Figure 4a gives an example of an inverted index
with fuzzy inverted lists. In each inverted list, we not only store the
matrix IDs, but also store the vector information for computing the
similarity to the representative vector. The vector information may
be the whole vector or vector signature which we will elaborate in
the later section. Note that in the inverted lists, we also store other
information (e.g., frequency of each vector) for computing the
relevant scores between matrices and query. Similarly, the norm
of each vector in the dictionary is stored in the dictionary together
with the vector. For simplicity, we omit those details in the figure.

In VecDex with fuzzy inverted lists, we only store one repre-
sentative vector for the similar vectors into the dictionary. When
answering queries, we need to retrieve multiple fuzzy inverted lists
for each query vector to achieve better quality of the query results.
To explain this, let us consider the following example.

5

vec1

vec2

vec3

...

...

...

vecn

10 0.8 5 0.6 40 0.3...

3 0.7 12 1 4 0.5

1 0.9 14 0.4 ...

...
…
…
...

...

matrix IDs

vector info

vector dictionary

(a) Inverted index on matrices

vec1

vec2

vec3

...

...

...

vecn

10 0.8 5 0.6 40 0.3...

10 0.6 12 1 4 0.5

1 0.9 10 0.3 ...

...
…
…
...

...

matrix ID=10:
vec a, … , vec v, ...

vector info

vector dictionary

(b) One vector in multiple inverted lists

Fig. 4. One vector in one or multiple lists

Example 1. Suppose the query has only one vector vq and there
are two fuzzy inverted lists IL1 and IL2. The representative
vectors of fuzzy inverted lists IL1 and IL2 are denoted by vec1
and vec2, respectively. The two vectors, vec1 and vec2, are
similar, but their similarity is smaller than the threshold for them
to store in the same inverted list. We also suppose that the vector
v3 is stored in IL1, because v3 is more similar to vec1 than
vec2; for the same reason, the vector v4 is stored in IL2. But,
the similarity between vq and v3 is the same as the similarity
between vq and v4. Therefore, both v3 and v4 should be returned
for the query.

An alternative way to build the inverted index for the ease of
retrieval is storing one vector into multiple fuzzy inverted lists.
Then, when answering queries, we only retrieve one most similar
fuzzy inverted list, instead of multiple inverted lists. There is a
trade-off between efficiency on insertion and query. One of the
key challenges of VecDex with fuzzy inverted lists is that the
index requires a large amount of memory. To tackle the challenge,
we propose to store the signature of a vector, where the signature
consists of a residual and the norm of the vector in this paper. Next,
we elaborate the technical details of VecDex with fuzzy inverted
lists and how the vector signatures are computed.

3.4.1 Dictionary initialization
Due to the use of fuzzy inverted lists, VecDex built on the same
set of vectors may be different. This is because the representative
vectors are selected incrementally, and as a result different order of
vector arrival results in different representative vectors in the dic-
tionary. To reduce the effect of the order of insertion on the index,
we perform an initialization in the dictionary before building the
index. Our key idea for the initialization is that we scan the set of
vectors until we obtainm distinct vectors (i.e., initializem vectors
in the dictionary), where m is a user input parameter. It represents
a trade-off between index stability and extra computation cost
of initialization. When m increases, VecDex is more resilient to
different insertion orders while the initialization cost is also higher.
We have found that the initialization leads to more stable inverted
index as we will show in our experiments.

3.4.2 One vector in one fuzzy inverted list
When answering queries, a query vector is matched to top-p
vectors in the dictionary, where p is an integer (e.g., p = 3).
Then, p inverted lists are obtained. Retrieving p inverted lists is
crucial to the quality of the query results, as we have discussed in
Example 1. As the LSM-tree may have multiple inverted indices,
we obtain p inverted lists from each inverted index. After obtaining
the inverted lists for the query, we perform list intersection to score

and rank the relevant matrices. Finally, we return the top relevant
matrices to respond the query.

This way of storing the vector information in the inverted list
makes the query response slower, because the number of inverted
lists may be large for each query in the context of the LSM-tree.
In the following, we propose storing a vector to multiple fuzzy
inverted lists: one vector is stored to p fuzzy inverted lists.

3.4.3 One vector in multiple fuzzy inverted lists
Figure 4b gives an example of storing one vector in multiple
inverted lists. In the figure, vector a of the matrix 10 is stored in
the inverted lists corresponding to the representative vector vec1,
vec2 and vecn. When the vectors are stored in this way, queries
can be answered in a simpler way. We only need to find the most
similar vector from the dictionary, and obtain the corresponding
inverted list for each query vector. This approach is more efficient
in handling queries, especially with the help of pruning, because
the number of inverted lists for each query is reduced by a factor
of p. In turn, the cost on insertion is higher than that storing
one vector in one inverted list. However, as we will show in
Section 4.5.2, the extra cost on insertion is negligible, because
the dominating cost in the insertion is searching for the similar
vectors using Faiss [13].

3.4.4 Storing vectors or its signatures to inverted lists
Storing the whole vectors: Since we use fuzzy inverted lists, only
storing the matrix ID is not enough to compute the similarity be-
tween a query vector and the vector in a matrix. This is because the
vector in a matrix is represented by a representative vector in the
dictionary. Besides the matrix ID, we also need to store the vector
information to the inverted list as shown in Figures 4a and 4b. A
natural way of storing the vector information in the fuzzy inverted
lists is to store the whole vectors into the lists. When answering
queries, we have the complete information about the vectors of
the matrices, and we can compute the similarity between the
query vector and the vectors of the matrices accurately. However,
this way of computing the similarity requires a large amount of
memory consumption, since all the vectors need to be fully stored
in the inverted indices. In the case of using multiple fuzzy inverted
lists, one vector even needs to be stored multiple times. This
cost is prohibitive for applications continuously generating a large
volume of data.

Storing the vector signatures: In this paper, we propose to store
the signature of a vector into the corresponding fuzzy inverted
list(s). The signature we use consists of the residual and the norm
of the vector, which is sufficient for common similarity functions
(e.g., Euclidean or cosine). The signature can be stored using two
floating point values and only requires 8 bytes: one floating point
for the norm of a vector in the dictionary and one for the residual
in the inverted list. Thus, the memory consumption is much less
than storing the whole vector into the inverted list. Given any
vector u, the residual (which is part of the signature) is computed
by the formula shown below.

rv = ∆(v,u) =
n∑
i=1

(v[i]− u[i])2 (1)

where v is the vector in the dictionary of the inverted index, and
u is a vector to be stored in the inverted list, ∆(·) denotes the
function for computing the residual, i denotes the i-th dimension
of the vectors and i is an integer in the domain of [1, n].

6

We denote the norm of the vector by lv . With this residual
rv and the norm lv of the vector, we are able to compute the
approximate similarity (e.g., similarity based on Euclidean or
cosine) of a query vector and the vector in a matrix. Theoretically,
our key idea can be used in any type of similarity functions
for measuring two vectors. The reason is that one can always
approximate a vector u using a standard vector v plus a residual.
We will show how the residual rv and the norm lv are used
in computing the similarity between the query vector and the
vector in the inverted list when we present query answering in
the following.

3.5 Insertion, query, update and deletion on VecDex

3.5.1 Insertion on VecDex

We provide the whole view of how the insertion on VecDex is
handled here. The key idea is that a matrix is divided into vectors
and each vector is individually inseted into the index. Algorithm 1
shows the pseudo-code of the insertion process which is similar to
the insertion on the traditional LSM-tree. The key differences are
in Lines 1 and 2. When we find which inverted list to insert the
vector, the algorithm retrieves a set of inverted lists. The size of the
set is one when one vector can only be inserted into one inverted
list; otherwise, the size of the set is p. During insertion, if the most
similar existing representative vector of a vector to be inserted is
below the similarity threshold, the vector to be inserted serves as
a new representative vector.Moreover, each representative vector
has a unique inverted list, so the inverted list for a representative
vector can be easily determined. In Line 2, we append the vector
information into the inverted lists, and the information may be
the whole vector or the vector signature depending on which
technique we want the algorithm to use. Lines 5 to 7 are to handle
the sub-indices merge when the sub-index exceeds its size limit.
Note that VecDex supports both precise and fuzzy inverted lists.
Different types of inverted lists need a different “append” function
(cf. Line 2). When VecDex uses precision inverted lists, the ID of
a matrix is appended to the list; when VecDex uses fuzzy inverted
lists, both the vector residual and the ID are appended to the list.

Algorithm 1: Insertion on VecDex
Input: the matrix ID, a vector, weight of the matrix, the

frequency of the vector in the matrix: id , v, w ,
and tf v , respectively; a set of indices: VecIdxSet ;
the ratio of log structure: ρ; the maximum size of
the first inverted index: δ

Output: Updated index set: V ecIdxSet
1 ListSet← getInvertedList(v, I0);
2 append(ListSet, v, id , w , tf v);
3 //maxSize: size limit of the last inverted index
4 maxSize← δ, i← 0;
5 while size(Ii) > maxSize do
6 Merge(Ii, Ii+1);
7 maxSize← maxSize× ρ, i← i+ 1;

3.5.2 Answering queries on VecDex

Without loss of generality, we suppose the query has two vectors
denoted by vq and v′q , where the subscript indicates the vectors
are from the query.

The whole vector is stored: When we store the whole vector
into the inverted list, answering the query is similar to the
traditional query processing. We retrieve the top p vectors in the
dictionary that match to the query vector vq , and similarly retrieve
p vectors in the dictionary for v′q where p ≥ 1. After that, we
obtain the inverted lists for the (2×p) vectors2. Then, we compute
the score for each matrix that appears in the retrieved inverted lists.
Finally, we rank the matrices based on the similarity scores, and
return the top-k relevant matrices to the query.

Only the vector signature is stored: As we have discussed
earlier, storing the whole vector into the inverted list requires
too much memory. We propose to store the vector signature into
the inverted list only. Then, answering the query involves the
following steps. First, similar to storing the whole vector into the
inverted list, we find the top p vectors in the dictionary that are
similar to the query vector vq , and find the top p vectors for query
vector v′q . Then, we retrieve the inverted lists from the index, and
compute the scores for the matrices in the inverted lists. Finally,
the matrices are sorted based on their scores and we return the
top-k relevant matrices as the query results. Different similarity
functions can be used in VecDex. Here, we present the formula
for computing the similarity of two vectors based on Euclidean
distance.

sim(vq,u) = 1− |∆(vq,vd)− rv|
||vq||+ ||vd||

(2)

where rv is the residual of the vector in the inverted list, u is
the vector in the matrix, vq is the query vector, vd is the vector
in the dictionary, and ∆(·) is the function for computing the
residual of two vectors as shown in Equation (1). The intuition
behind Equation (2) is that vectors close to each other in the
vector space have a larger similarity score, which is the same
in the nearest neighbor search problems [31]. To be more specific,
(|∆(vq,vd)− rv|) is an approximation to the distance of vq and
v, and the denominator (||vq|| + ||vd||) is for normalizing the
distance. Finally, “1” subtracts the normalized distance to obtain
the similarity score of the two vectors.

Sorting the residual: It is worthy to point out that we can
sort the residuals ∆(vq,vd) for the inverted list to improve the
efficiency on query answering. This is because for a query vector
and an inverted list, vq and vd are constant and the only variable in
Equation (2) is rv . With the inverted list sorted by ∆(vq,vd), we
can use binary search to quickly find the vector in the inverted
list that minimizes |∆(vq,vd) − rv|. Then, we evaluate the
nearby vectors to find the top-k relevant results without scanning
the whole inverted list. Sorting residuals results in faster query
response as we will see in Section 4.5.1.

Moreover, the cosine similarity can also be used with vector
signature which include residual rv and norm lv .

cos〈vq,v〉 =
vq · v

||vq|| · ||v||
≈ vq · vd + rv
||vq|| · lv

(3)

We replace v by vd, the residual rv and norm lv , because the
whole vector is not stored for the sake of more memory efficient.

Using the vector signature may not be as accurate as storing the
whole vector. However, as we will show in our experiments, the
results from the two approaches of storing the vector information
are almost the same. The key reason is that the query answering

2. To be more precise, the number of inverted lists may be smaller than
(2 × p) when some inverted lists for vq are identical to the inverted lists for
v′
q . For ease of presentation, we assume the overlap does not occur.

7

is approximate for both of the approaches, and using vector
signatures does not have a significant negative impact on the query
results.

Computing relevant score of a query and a matrix: The rele-
vant score between a query and a matrix is measured using term
frequency and inverse document frequency (TF-IDF) [32]. More
specifically, the “term frequency” is the number of occurrences of
the vector v in the matrix, and the “inverse document frequency”
is the inverse of the number of matrices that contain the vector v.
As the similarity between the query vector and the vector v in the
matrix may not equal to 1, we use the weighted term frequency
for the vector v, where the weight is the similarity value of the
two vectors.

As VecDex is based on the LSM-tree, there are multiple
inverted indices. For retrieving the top-k relevant results faster,
we store the maximum score for each inverted list, such that we
can perform pruning using the maximum score.

Pseudo-code: Algorithm 2 summarizes the process of query
answering. The multiple inverted indices are denoted by “Ve-
cIdxSet” in the pseudo-code. The maximum score for each in-
verted list (cf. Lines 3 and 4) is evaluated for the query. Then,
for each query vector, we obtain top p most related inverted lists
(cf. Lines 8 and 9). After we obtain the related inverted lists for
the query, we start evaluating the top matrices. In this algorithm,
we evaluate the top 3 matrices from each set of inverted indices
(cf. Lines 11 and 12), where 3 is a default parameter and users
can choose other value. Following that, we obtain the information
(e.g., term frequency of the vector and the importance of each
matrix) of the matrices, and compute the scores for each matrix
(cf. Lines 13 and 14). Note that the score computation is different
for VecDex with precise inverted lists and with fuzzy inverted lists,
because the one with fuzzy inverted lists needs to consider vector
residual when computing the score. Finally, the top k candidates
are saved, and the upper and lower bounds for the scores are
evaluated (cf. Lines 15 to 17). If the lowest score in the top
k candidates is larger than the largest score for the remaining
matrices, the process is completed (cf. Line 18).

3.5.3 Update and deletion on VecDex
For completeness, we present the update and deletion operations
in VecDex. In real-world applications, the meta information of a
matrix (i.e., the importance of the matrix) may be changed, and we
need to update this information in the index. The update operation
can be handled in a fairly easy manner, because the information
for all the matrices are stored in a hash table which we can quickly
retrieve and update. It is important to point out that the size of this
hash table is much smaller compared with the index, because the
size of the hash table is linear in the number of matrices while the
size of the index is linear in the number of vectors.

The deletion operation is performed when the sub-indices in
the LSM-tree are merged, which is a common mechanism for
handling deletions in LSM-trees. When a matrix needs to be
deleted, we mark the matrix as “deleted” (i.e., logically deleted).
When merge is triggered, those matrices marked as “deleted” are
physically deleted while merging.

4 EXPERIMENTAL STUDIES

4.1 Settings
The experiments were conducted on a workstation running Linux
with 2 Xeon E5-2640v4 10 core CPUs and 256GB main memory.

Algorithm 2: Query answering in VecDex

Input: query vectors: vq , v′q; index on the matrices:
V ecIdxSet; a hash table for matrix information:
htbl; the number of query results: k

Output: a set of matrices: res
1 sc> ← 0
2 foreach I ∈ V ecIdxSet \ I0 do
3 w, tfvq

, tfv′
q
← GetMaxScoreInfo(I , vq , v′q);

4 sc← CompScore(w, tfvq , tfv′
q
);

5 if sc > sc> then
6 sc> ← sc;

7 foreach I ∈ V ecIdxSet do
8 ListSet1← getInvertedList(vq , I);
9 ListSet2← getInvertedList(v′q , I);

10 while ListSet1 6= φ && ListSet2 6= φ do
11 c1, c2, c3 ← PopTop3(ListSet1);
12 c4, c5, c6 ← PopTop3(ListSet2);
13 info1 to info6 ← Get(htbl, c1, ..., c6, vq , v′q);
14 sc1 to sc6 ← ComputeScore(info1 to info6);
15 SaveTopK(c1 to c6, sc1 to sc6, res);
16 sc⊥ ← GetLowestScore(res);
17 sc← GetNextLargestScore(c1 to c6);
18 if sc⊥ ≥ sc> && sc⊥ ≥ sc then
19 return;

TABLE 1
Variables and their default values

name description value
ρ ratio of LSM-tree 2
ni the # of vectors to insert 4M
nq the # of queries 1,000
k top-k query results 40
SI0 the # of vectors in I0 2M
na the total # of vectors in the data set 16M

The program was compiled with -O3 option. We used a dataset
obtained from Ximalaya [33]—an audio streaming service. The
dataset contains 40 thousand audio streams which contain about
16 million vectors in total (the storage size in MongoDB is
460 GB). The total length of the audio streams is about 1,067
hours, and the average length of an audio stream is about 16
minutes. We used Baidu Yuyin speech recognition services3 to
transcribe the audio streams into text. The transcribed text consists
of 16 million words (excluding stop words), the average number
of unique words in each audio stream is about 400. We used
word embedding [2] to produce a 13 dimension vector for each
word. From this dataset, we obtain 40,000 matrices representing
40,000 audio streams, and another 40,000 matrices representing
the corresponding documents. These matrices are used to evaluate
the performance of our proposed index. In the experiments, we use
“vector” instead of “matrix” as the unit when varying the index
size. This is because two matrices may have different number of
vectors (i.e., different number of rows), and using vector as the unit
is more reasonable, and is more helpful when presenting insights.

In our experiments, we mainly used word vectors to investigate
the index, as the type of vectors does not matter for our proposed

3. http://yuyin.baidu.com

8

0.5K 1K 2K 4K 8K
number of queries

0

1

2

3

4

5

el
ap

se
d

tim
e

(s
ec

)

VecDex
LSII
RTSI

(a) query processing (exact)

800K 1.6M 2.4M 3.2M 4M
number of vectors to insert

0

20

40

60

80

100

120

el
ap

se
d

tim
e

(th
ou

sa
nd

 se
c) VecDex

LSII
RTSI

(b) insertion (exact)

0.5K 1K 2K 4K 8K
number of queries

0

2

4

6

el
ap

se
d

tim
e

(s
ec

)

VecDex
LSII
RTSI

(c) query (approximate)

800K 1.6M 2.4M 3.2M 4M
number of vectors to insert

0

25

50

75

100

125

150

el
ap

se
d

tim
e

(th
ou

sa
nd

 se
c) VecDex

LSII
RTSI

(d) insertion (appr.)

800K 1.6M 2.4M 3.2M 4M
number of vectors to insert

0

50

100

150

200

250

300

350

of

 v
ec

to
rs

 in
 th

e
di

ct
io

na
ry VecDex

LSII
RTSI

(e) Dictionary size

Fig. 5. Comparison of insertion and query efficiency

index. To confirm that the proposed index is applicable to other
types of vectors, besides word vectors, we also produced millions
of 13 dimension audio vectors from 40 thousand audio streams
using Mel-Frequency Cepstrum Coefficients (MFCC) [34]. Apart
from the audio streams, we also obtained other information of each
audio stream, such as title, time stamp, tags, comments and other
popularity related data. To mimic the real-world search scenario,
this information is used to compute the weight (i.e., importance)
of each audio stream, which is used in the query result ranking.
The default parameters of the index is shown in Table 1. Next, we
first compare VecDex with the state-of-the-art solution, and then
investigate the efficiency of insertion and query. After that, we
study the effectiveness of the individual techniques of the index.

4.2 Comparison with the state-of-the-art

As discussed in Section 2, there is little work on matrix retrieval.
Therefore, we adapted two solutions, RTSI [22] and LSII [21],
for real-time search on text and audio streams as the baselines.
The dictionary of RTSI and LSII originally stores strings, so we
modified the data type of the dictionary to store vectors (i.e.,
changing from “string type” to “vector type”). In this experiment,
we initialized the RTSI and LSII index and VecDex with 4 million
vectors from around 10,000 matrices, respectively. For a fairer
comparison, VecDex is equipped with precise inverted lists, since
both LSII and RTSI use precise inverted lists.

Figure 5 shows the comparison among RTSI, LSII and VecDex
on query and insertion, in the setting of exact and approximate
search. VecDex is much more efficient than RTSI and LSII in
terms of both query processing and insertion, thanks to our series
of techniques proposed in Section 3. We also compared the total
size of the dictionaries of RTSI, LSII and VecDex. The size was
measured by the number of vectors. As we can see from Figure 5e,
VecDex has a much smaller dictionary compared with RTSI and
LSII, which indicates that VecDex requires much less memory.
Next, we investigate the insertion, query and individual techniques
of VecDex to provide a better understanding of VecDex.

4.3 Efficiency of insertion

In this set of experiments, we study the efficiency of insertion
on the proposed index. Here, each vector in the dictionary in the
inverted index only corresponds to one inverted list. We postpone

TABLE 2
Varying existing vectors in the index (sec)

of vectors in VecDex for exact search for approximate search
2M 144.41 7547.57
4M 155.62 7904.78
6M 181.76 8171.25
8M 157.25 8327.72
10M 184.52 8580.31

TABLE 3
Varying the number of vectors to insert (sec)

of vectors to insert for exact search for approximate search
2M 64.69 3627.53
4M 119.53 5714.79
6M 206.43 10469
8M 271.76 14203.1
10M 358.9 16320

the study of one vector corresponding to multiple inverted lists in
Section 4.5.2. We investigate the efficiency by varying the index
size and the number of vectors to insert. When varying the index
size, we set the number of vectors to insert to be 4 million which
includes around 10,000 matrices. Table 2 shows the total insertion
time when the number of vectors in the index is from 2 million
to 10 million. The index built for exact search is 10x times faster
than the index built for approximate search. This is because when
building the index exact search, we can use hashing to quickly
find which inverted list to insert. In comparison, when building
the index for approximate search, we need to perform similarity
search (using Faiss) to locate the most similar vector, and insert
the vector into the corresponding inverted list. One observation
from the results is that the index size has insignificant impact on
the cost of insertion.

We also show the results on varying the number of vectors
to insert to the index. In this experiment, we initialized the index
with 4 million vectors from around 10,000 matrices. We varied
the number of vectors to insert into the index. The number of
vectors to insert varies from 2 million to 10 million. Table 3
shows the results. The growth rate of the total time of insertion is
stable for building index for exact search and approximate search.
Specifically, when the number of vectors to insert increases 5
times, the total insertion time also grows about 5 times.

4.4 Efficiency of query answering

In this set of experiments, we study the effect of the number
of vectors in the index and the effect of the number of queries
on query answering. When studying the effect of the number of
vectors in the index, we set the number of queries to 1000, and
varied the number of vectors in the index from 2 million to 10
million. The vectors were obtained from about 40,000 matrices.
Figure 6a shows the results. As we can see from the results,
the time of query answering is about linear in the index size.
When the index size increases about 5 times (from 2 million to 10
million), the query answering time also increases about 5 times.
The query answering time for the index for exact search is more
stable compared with that for approximate search, thanks to the
use of hashing for exact search.

When studying the effect of the number of queries, we set the
number of vectors in the index to 4 million which covers about
10,000 matrices, and we varied the number of queries from 500 to

9

2M 4M 6M 8M 10M
number of vectors in index

0.00

0.02

0.04

0.06

el
ap

se
d

tim
e

(s
ec

)
exact search
approximate search

(a) Varying index size for query

0.5K 1K 2K 4K 8K
number of queries

0.0

0.5

1.0

1.5

el
ap

se
d

tim
e

(s
ec

)

exact search
approximate search

(b) Varying the number of queries

Fig. 6. Efficiency on query answering

8,000. Figure 6b gives the results. As we can see from the results,
the query answering time grows stably as the number of queries
increases.

4.5 Effectiveness of individual techniques
Here, we study the effectiveness of our proposed techniques
including vector signatures, initialization, hashing for exact search,
inserting a vector into multiple inverted lists for faster query
answering, pruning and index update.

4.5.1 Storing the whole vectors vs. vector signatures
As we have discussed in Section 3.4.4, there are two ways to store
the vector information in the inverted list: storing the whole vec-
tors or storing the vector signatures. In this set of experiments, we
aim to compare (i) the time and memory efficiency of insertion for
these two types of storage, (ii) the efficiency of query answering
for these two types of storage, and (iii) the difference in terms of
query results.

Insertion: We first study the difference in terms of insertion
time. We varied the number of vectors to insert into the index
from 800 thousand to 4 million, and measured the total insertion
time. Figure 7a shows the trend on the insertion as the number
of vectors increases. The key insight is that the elapsed time on
insertion for these two types of storage is almost the same. This
is because the majority of the time is taken by searching for the
right inverted list to insert, and the cost of computing the vector
signatures is negligible.

We also study the difference in terms of memory consumption
for the two types of storage. Similar to our previous settings, we
varied the number of vectors to insert from 800 thousand to 4
million. We measured the total memory consumption for building
the two types of indices: one storing the whole vectors in the
inverted lists, and the other storing the vector signatures in the
inverted lists. Figure 7b shows the results. As we can see from
the results, storing the vector signatures is much more memory
efficient, especially when the number of vectors is large. For
example, when the number of vectors inserted in the index is
4 million, the memory consumption of vector signatures is only
around a half of that storing the whole vectors. Please note that the
number of dimension of the vectors is 13 in our experiments. For
high dimensional data, storing vector signatures becomes much
more intriguing.

Query answering: The vector signatures are better than stor-
ing the whole vectors in terms of insertion as shown in Figures 7a
and 7b. We also investigate the efficiency on query answering
using vector signatures in comparison with storing the whole
vectors. For studying query answering, we set the number of

800K 1.6M 2.4M 3.2M 4M
number of vectors to insert

0

1000

2000

3000

4000

el
ap

se
d

tim
e

(s
ec

)

vector signature
whole vector

(a) Insertion time

800K 1.6M 2.4M 3.2M 4M
number of vectors to insert

0

500

1000

1500

2000

2500

3000

m
em

or
y

co
ns

um
pt

io
n

(M
B)

vector signature
whole vector

(b) Memory consumption

Fig. 7. Storing vectors vs. storing signatures

0.5K 1K 2K 4K 8K
number of queries

0.0

0.5

1.0

1.5

2.0

el
ap

se
d

tim
e

(s
ec

)

vector signature
whole vector

(a) Query on vectors signatures

0.5K 1K 2K 4K 8K
number of queries

0.2

0.4

0.6

0.8

1.0

el
ap

se
d

tim
e

(s
ec

) sorted
not sorted

(b) Sorting the vector signatures

Fig. 8. Storing and sorting vectors signatures

vectors in the inverted index to 4 million, and varied the number
of queries from 500 to 8,000. According to the results shown in
Figure 8a, storing vector signatures also results in more efficient
query answering. The key reason is that the inverted lists can
be sorted by the vector signatures for faster query answering
(as discussed in Section 3.4.4), while the inverted lists with the
whole vectors cannot be sorted. Hence, the query answering is
faster when using vector signatures. The sorted vector signatures
help improve the query answering efficiency notably as shown in
Figure 8b.

Query result comparison: To investigate the quality of query
results, we issued 1,000 queries and collected the top-10 relevant
query results. The query results of these 1,000 queries formed the
ground truth for this experiment. In our experiment, we found that
the quality of the query results obtained from the index storing
the whole vector and from the index storing vector signatures
is similar (i.e., F1 score of 91% and 89%). More specifically,
the recall of both approaches is about 98%. The precision of
VecDex using the whole vector is about 85%, and that using vector
signature is about 82%. This result confirms that using vector
signatures is an excellent approach for building the index.

4.5.2 Inserting a vector into multiple fuzzy inverted lists

As we have discussed in Section 3.4, one vector can be inserted
into multiple fuzzy inverted lists to improve the query efficiency.
Here, we study the cost of insertion and query answering when
using multiple fuzzy inverted lists for a vector. The number of
inverted lists for each vector was set to 3 in this set of experiments.

Insertion: First, we study the insertion time when one vector
is inserted into multiple inverted lists. We varied the number of
vectors to insert from 800 thousand vectors to 4 million vectors,
and measured the elapsed time. As we can see from Figure 9a, the
insertion time of the multiple lists and single list is similar. This is
because the majority of the time is taken in searching for the right

10

800K 1.6M 2.4M 3.2M 4M
number of vectors to insert

0

1000

2000

3000

4000

el
ap

se
d

tim
e

(s
ec

)
multiple lists
single list

(a) elapsed time (sec)

800K 1.6M 2.4M 3.2M 4M
number of vectors to insert

0

500

1000

1500

2000

2500

3000

3500

m
em

or
y

co
ns

um
pt

io
n

(M
B)

multiple lists
single list

(b) memory consumption (MB)

Fig. 9. Insertion on multiple vs. single inverted list

0.5K 1K 2K 4K 8K
number of queries

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

el
ap

se
d

tim
e

(s
ec

)

multiple lists
single list

(a) Query on multiple inverted lists

2M 4M 6M 8M 10M
number of vectors in index

50000

55000

60000

65000

70000

75000

80000

nu
m

be
r o

f v
ec

to
rs

index initialization
no initialization

(b) Index initialization

Fig. 10. Query on multiple inverted lists and initialization

inverted list to insert. Inserting a vector to one list or multiple lists
requires insignificant amount of time.

We also study the memory consumption for the index using
multiple inverted lists for a vector. As expected, using multiple
inverted lists for each vector requires more memory than using
single inverted list. Figure 9b shows the results. One observation
is that even though the number of lists for each vector is 3, the
memory consumption for this setting is only twice as much as the
method using single list. The memory consumption tends to be
sublinear in the number of inverted lists to be used by each vector.

Query answering: With the assistance of multiple inverted
lists, the query answering process is simpler. Instead of retrieving
multiple inverted lists for each query vector, we only need to
retrieve one inverted list, which makes the overall query answering
faster. Figure 10a illustrates the results. As the number of queries
increases, the performance gain of using multiple inverted lists
for each vector is more significant. More specifically, when the
number of queries is 8,000, the query answering time is reduced
by more than a half. Using multiple inverted lists for each vector is
more intriguing for applications required real-time response time.

Finally, we also measured the difference of the query results
between multiple inverted lists and single inverted list. The query
results are similar. Therefore, the only cost for using multiple
inverted lists is more memory consumption as indicated in Fig-
ure 9b.

4.5.3 Index initialization
As we have discussed in Section 3.4.1, the size of the vectors in
the dictionary of the index may be different for the same set of
matrices, when the vectors are inserted into the index in different
orders (e.g., inserting from v0 to vn vs. inserting from vn to v0).
To study the effect of initialization, we randomly selected 30,000
vectors from the set of matrices to initialize the index. Then, we
compared the number of vectors in the dictionaries of the two
indices built with and without initialization. As we can see from
Figure 10b, the number of vectors in the dictionary of the index

TABLE 4
Varying the number of vectors to insert (sec)

of vectors in index Hashing Nearest neighbor
800K 30.95 1490.45
1.6M 70.36 3552.82
2.4M 85.6 4474.67
3.2M 113.24 5422.12
4M 148.27 8017.71

800K 1.6M 2.4M 3.2M 4M
number of vectors in index

0.2

0.4

0.6

0.8

1.0

el
ap

se
d

tim
e

(s
ec

)

exact w/ pruning
exact w/o pruning
approx. w/ pruning
approx. w/o pruning

(a) Pruning techniques

800K 1.6M 2.4M 3.2M 4M
number of vectors in index

1.0

1.5

2.0

2.5

el
ap

se
d

tim
e

(m
se

c)

(b) Elapsed time of update

Fig. 11. Pruning techniques and update cost

with initialization is larger than the one without initialization. This
indicates that the important vectors are reserved in the dictionary
when the index is initialized; otherwise, the important vectors may
not be represented in the dictionary.

4.5.4 Index for exact search with hashing
As discussed in Section 3.3, it is possible to purely use Faiss to
support both exact search and approximate search. When building
index for exact search, we can simply set the similarity threshold
to 1. Then, the index built can be used for exact search. However,
this index is inefficient both in terms of insertion and query. This
is because Faiss requires performing nearest neighbor search to
find the vector that exactly matches to the query vector. Hashing
is more efficient than nearest neighbor search to find the matched
vector. We conducted experiments to compare the efficiency of the
indices with hashing and with nearest neighbor search for exact
search. Table 4 shows the results. Hashing achieves 10x times
speedup compared with that using nearest neighbor search.

4.5.5 Pruning techniques and index update
When answering queries, we compute the bound for the similarity
scores so as to allow early termination as discussed in Sec-
tion 3.5.2. Figure 11a shows both exact and approximate search
with or without pruning. As we can see from the results, the
pruning is effective especially when the index size is large. For
example, when the number of vectors in the index is 4 million, the
time for search is reduced by half.

Update of the matrix information can be efficiently handled in
our proposed index, because the matrix information is stored in a
hash table. Figure 11b shows the results on the index with various
number of vectors, and the total number of insertion operations is
1,000. The results show that update operations can be done in the
order of millisecond.

4.5.6 The effect of similarity threshold
As our proposed index supports approximate search, here we
inspect the effect of the similarity threshold on the efficiency
of insertion and query. We also inspect the number of vectors
in the dictionary as the similarity threshold changes from 0.8

11

TABLE 5
Effect of similarity threshold on insertion, query and dictionary size

similarity
threshold

insertion elapsed
time (sec)

query elapsed
time (sec)

of vectors in
the dictionary

0.80 3561.9 0.042 32100
0.85 3762.7 0.041 35727
0.90 4707.3 0.030 46963
0.95 6840.4 0.025 73723

800K 1.6M 2.4M 3.2M 4M 10M 20M
number of queries

0

1

2

3

4

5

el
ap

se
d

tim
e

(s
ec

) VecDex

(a) query processing

2M 4M 6M 8M 10M 20M 40M
number of vectors to insert

0

500

1000

1500

2000

el
ap

se
d

tim
e

(s
ec

)

VecDex

(b) insertion from scratch

Fig. 12. Effect of dataset size on query processing and insertion

to 0.95. Table 5 summarizes the results. One important fact to
highlight here is that the number of vectors in the dictionary
increases as the similarity threshold increases. This is because
many vectors considered as similar when threshold is 0.8 are not
longer considered as similar when threshold is 0.95. As a result,
the dictionary becomes larger to accommodate the differences.

For studying the effect of the similarity threshold on insertion,
we set the number of vectors to insert to be 4 million while varying
the similarity. As we can see from the second column of Table 5,
the elapsed time for insertion increases as the similarity threshold
increases. This is because the dictionary size is larger when the
similarity threshold is large. The larger dictionary size makes the
nearest neighbor search by Faiss more expensive.

For studying the effect of the similarity threshold on query,
we set the number of queries to 10,000 and built an index
which contains 4 million vectors. When the similarity threshold
increases, the query answering time decreases. The reason behind
this is that the inverted list corresponding to the query vector
only contains the vectors very similar to the query vector. Hence,
the pruning techniques are more effective, and the top-k relevant
results can be identified quicker.

4.5.7 Effect of data set size
To further investigate the efficient of VecDex on larger data sets,
we conducted experiments on a synthetic data set which contains
100,000 matrices. The matrices were generated from 100,000
unique vectors and each matrix contains about 400 vectors of
13 dimensions. The efficient of query processing and insertion is
shown in Figure 12. The results show that VecDex can handle 100
queries on 100,000 matrices within 5 seconds, and the insertion of
100,000 matrices to VecDex takes only half an hour. The results
confirm that VecDex is efficient on large data sets as well.

4.5.8 Efficiency on other types of vector
Our proposed index is generic and can work with other types
of vectors. Here we used the 13 dimension vectors generated
from 10,000 matrices using Mel-Frequency Cepstrum Coefficients
(MFCC) [34]. We study the efficiency on insertion and query
answering. Table 6 shows the efficiency of inserting 2 to 10 million
vectors. The results again confirm that the insertion is efficient,

TABLE 6
Efficiency on insertion of audio vectors (sec)

of vectors in index exact search approximate search
2M 168.733 3340.3
4M 252.105 9194.77
6M 475.081 14216.7
8M 590.408 23105.7
10M 745.426 24832.1

TABLE 7
Efficiency on query answering of audio vectors (sec)

of queries exact search approximate search
0.5K 0.01 0.31
1K 0.02 0.57
2K 0.07 1.16
4K 0.16 2.31
8K 0.27 4.56

and real-time. Please note that the elapsed time is the total time of
inserting millions of vectors.

Table 7 shows the elapsed time of answering 500 to 8,000
queries for both exact search and approximate search. The results
show that our proposed index can work on different types of
vectors and can answer queries highly efficiently.

5 CONCLUSION AND FUTURE WORK

Matrices can represent many real-world objects such as doc-
uments, audio streams and videos, thanks to the embedding
techniques in machine learning and artificial intelligence. The
technique of word embedding is to represent words using vectors;
image embedding and audio embedding represent multimedia data
by vectors. The vectors from the same object (e.g., document
or audio) are stored together as a matrix. There is a compelling
need for a data management system for managing these matrices
due to the popularity of machine learning. In this paper, we have
proposed an index for real-time matrix retrieval. The index can be
used for efficient search on the matrices by query vectors. Besides
fast query response time as shown in the experimental study,
the index also supports real-time insertion thanks to the use of
the log-structured merge-tree (LSM-tree). Moreover, our proposed
index supports both exact and approximate search which many
real-world applications rely on. To further improve the search
efficiency, we have proposed precise and fuzzy inverted lists to
power the index, and proposed a series of novel techniques to
achieve memory friendly and real-time search. Comprehensive
experimental results have shown that our proposed index can
support both exact and approximate search on matrices in real-
time, and is more time and memory efficient than the state-of-the-
art method.

The future work includes case studies on more real-world
applications such as image and video search, developing a fully-
fledge system for matrix management for emerging data embed-
ding applications, and the research of extending this work to
distributed settings.

ACKNOWLEDGEMENTS

This work is supported by a MoE AcRF Tier 1 grant (T1
251RES1824) in Singapore.

12

REFERENCES

[1] J. Turian, L. Ratinov, and Y. Bengio, “Word representations: a simple
and general method for semi-supervised learning,” in ACL, 2010, pp.
384–394.

[2] O. Levy and Y. Goldberg, “Dependency-based word embeddings,” in
ACL, vol. 2, 2014, pp. 302–308.

[3] D. Garcia-Gasulla, E. Ayguadé, J. Labarta, J. Béjar, U. Cortés, T. Suzu-
mura, and R. Chen, “A visual embedding for the unsupervised extraction
of abstract semantics,” Cognitive Systems Research, vol. 42, pp. 73–81,
2017.

[4] A. Habibian, T. Mensink, and C. G. Snoek, “Video2vec embeddings
recognize events when examples are scarce,” IEEE Transactions on
Pattern Analysis & Machine Intelligence, no. 10, pp. 2089–2103, 2017.

[5] M. Grbovic, N. Djuric, V. Radosavljevic, and N. Bhamidipati, “Search
retargeting using directed query embeddings,” in WWW. ACM, 2015,
pp. 37–38.

[6] S. Brin and L. Page, “The anatomy of a large-scale hypertextual web
search engine,” Computer networks and ISDN systems, vol. 30, no. 1-7,
pp. 107–117, 1998.

[7] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of
word representations in vector space,” preprint arXiv:1301.3781, 2013.

[8] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, “Dis-
tributed representations of words and phrases and their compositionality,”
in NeurIPS, 2013, pp. 3111–3119.

[9] Z. Wen, J. Shi, Q. Li, B. He, and J. Chen, “ThunderSVM: A fast SVM
library on GPUs and CPUs,” JMLR, vol. 19, no. 1, pp. 797–801, 2018.

[10] Z. Wen, J. Shi, B. He, Q. Li, and J. Chen, “ThunderGBM: Fast GBDTs
and random forests on GPUs,” JMLR, vol. 21, pp. 1–5, 2020.

[11] K. L. Cheung and A. W.-C. Fu, “Enhanced nearest neighbour search on
the r-tree,” ACM SIGMOD Record, vol. 27, no. 3, pp. 16–21, 1998.

[12] K. Li and J. Malik, “Fast k-nearest neighbour search via prioritized DCI,”
in ICML, 2017, pp. 2081–2090.

[13] J. Johnson, M. Douze, and H. Jégou, “Billion-scale similarity search with
gpus,” arXiv preprint arXiv:1702.08734, 2017.

[14] N. Brisaboa, O. Pedreir A, and P. Zezula, “Similarity search and applica-
tions,” in International Conference on Similarity Search and Applications
(SISAP). Springer, 2013.

[15] A. Mackiewicz and W. Ratajczak, “Principal components analysis
(PCA),” Computers and Geosciences, vol. 19, pp. 303–342, 1993.

[16] D. D. Lee and H. S. Seung, “Algorithms for non-negative matrix
factorization,” in NeurIPS, 2001, pp. 556–562.

[17] H. Ferhatosmanoglu, E. Tuncel, D. Agrawal, and A. El Abbadi, “Vector
approximation based indexing for non-uniform high dimensional data
sets,” in CIKM. ACM, 2000, pp. 202–209.

[18] R. Baeza-Yates, B. Ribeiro-Neto et al., Modern information retrieval.
ACM press New York, 1999, vol. 463.

[19] V. N. Anh and A. Moffat, “Inverted index compression using word-
aligned binary codes,” Information Retrieval, vol. 8, no. 1, pp. 151–166,
2005.

[20] P. O’Neil, E. Cheng, D. Gawlick, and E. O’Neil, “The log-structured
merge-tree (lsm-tree),” Acta Informatica, vol. 33, no. 4, pp. 351–385,
1996.

[21] L. Wu, W. Lin, X. Xiao, and Y. Xu, “Lsii: An indexing structure for
exact real-time search on microblogs,” in International Conference on
Data Engineering (ICDE). IEEE, 2013, pp. 482–493.

[22] Z. Wen, X. Liu, H. Cao, and B. He, “RTSI: An index structure for multi-
modal real-time search on live audio streaming services,” in International
Conference on Data Engineering (ICDE). IEEE, 2018, pp. 1495–1506.

[23] Z. Wen, M. Liang, B. He, Z. Xia, and B. Li, “Aucher: Multi-modal
queries on live audio streams in real-time,” in IEEE 35th International
Conference on Data Engineering (ICDE). IEEE, 2019, pp. 1960–1963.

[24] G. Navarro, “A guided tour to approximate string matching,” ACM
computing surveys (CSUR), vol. 33, no. 1, pp. 31–88, 2001.

[25] G. Kucherov, K. Salikhov, and D. Tsur, “Approximate string matching
using a bidirectional index,” Theoretical Computer Science, vol. 638, pp.
145–158, 2016.

[26] D. E. Broadbent, P. Cooper, and M. Broadbent, “A comparison of
hierarchical matrix retrieval schemes in recall.” Journal of Experimental
Psychology: Human Learning and Memory, vol. 4, no. 5, p. 486, 1978.

[27] T. Bhamre, T. Zhang, and A. Singer, “Orthogonal matrix retrieval in cryo-
electron microscopy,” in Proceedings/IEEE International Symposium on
Biomedical Imaging: from nano to macro. IEEE International Sympo-
sium on Biomedical Imaging, vol. 2015. NIH Public Access, 2015, p.
1048.

[28] L. Liu, F. Zhou, X. Bai, J. Paisley, and H. Ji, “A modified em algorithm
for isar scatterer trajectory matrix completion,” IEEE Transactions on
Geoscience and Remote Sensing, 2018.

[29] S. Robertson, H. Zaragoza et al., “The probabilistic relevance framework:
Bm25 and beyond,” Foundations and Trends R© in Information Retrieval,
vol. 3, no. 4, pp. 333–389, 2009.

[30] J. Wang, Y. Zhang, Y. Gao, and C. Xing, “plsm: A highly efficient lsm-
tree index supporting real-time big data analysis,” in Computer Software
and Applications Conference (COMPSAC), 2013 IEEE 37th Annual.
IEEE, 2013, pp. 240–245.

[31] P. Indyk and R. Motwani, “Approximate nearest neighbors: towards
removing the curse of dimensionality,” in Proceedings of the thirtieth
annual ACM symposium on Theory of computing. ACM, 1998, pp.
604–613.

[32] J. Ramos et al., “Using tf-idf to determine word relevance in document
queries,” in Instructional Conference on Machine Learning, vol. 242,
2003, pp. 133–142.

[33] http://www.ximalaya.com/, “Ximalaya: enabling users to share audio and
personal radio stations.”

[34] F. Zheng, G. Zhang, and Z. Song, “Comparison of different implemen-
tations of mfcc,” Journal of Computer Science and Technology, vol. 16,
no. 6, pp. 582–589, 2001.

Zeyi Wen is a Lecturer at The University of
Western Australia (UWA). Before joining UWA,
Zeyi worked as a Research Fellow in National
University of Singapore from 2017 and 2019,
after receiving his PhD degree from and working
as a Research Fellow at The University of Mel-
bourne. His areas of research include machine
learning, high-performance computing and data
mining.

Mingyu Liang is currently a postgraduate stu-
dent at Cornell University. He obtained a Bach-
elor’s degree from Shanghai Jiao Tong Univer-
sity. His research interests include computer sys-
tems, cloud computing and data management
systems.

Bingsheng He received the bachelor degree
in computer science from Shanghai Jiao Tong
University (1999-2003), and the PhD degree in
computer science in Hong Kong University of
Science and Technology (2003-2008). He is an
Associate Professor in School of Computing of
National University of Singapore. His research
interests are high performance computing, dis-
tributed and parallel systems, and database sys-
tems.

Zexin Xia is currently a undergraduate student
with Shanghai Jiao Tong university. His research
interests include data mining and computer vi-
sion.

